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This paper describes analytical and numerical solutions for the flow of a Bingham 
plastic in an eccentric annulus. Analytical solutions are obtained by expanding in 
powers of 8, the ratio of the difference in radii of the bounding cylinders to their 
mean. The solution over most of the annulus is similar to that in a slot of uniform 
width, containing a central plug-like region over which the velocity is independent 
of the radial variable. However, unlike the uniform-slot solution, the velocity in the 
plug varies around the annulus and the stress exceeds the yield stress. This simple 
structure is supplemented by true plugs (over which the velocity is constant and the 
stress is below the yield stress) at the widest and, in some cases, the narrowest parts 
of the annulus. A simple criterion is given for conditions under which the fluid ceases 
to flow on the narrow side and bounds are obtained for the extent of the motionless 
region and for the true plugs. 

The predictions of the theory have been compared to numerical results over a wide 
range of eccentricities, radius ratios, fluid properties and flow parameters. Good 
quantitative agreement has been reached for radius ratios in excess of about 0.7. In 
particular the extent and location of pseudo-plugs and true plugs are confirmed. 

1. Introduction 
Many fluids commonly used in industry have rheologies very different from that 

of Newtonian fluids. In particular, many pastes and suspensions exhibit shear- 
thinning behaviour and in addition possess a yield stress below which the fluid either 
will not flow or will flow as an unsheared plug. The simplest yield-stress fluid is a 
Bingham plastic for which the stress-rate of strain relation is linear above the yield 
stress. Many industrial applications of the Bingham rheology are described in a 
review by Bird, Dia & Yarusso (1983). 

Bird et al. (1983) have also reviewed all known exact solutions for the flow of 
Bingham plastics in simple geometries (including a slot and a concentric annulus). A 
common feature of all the flows described in that review is an unsheared plug whose 
boundaries are parallel to the physical boundaries. Relatively little is known about 
the flow of yield-stress fluids in more complex geometries in which the physical 
boundaries are not parallel, or more generally, in which the cross-sectional area is not 
uniform. A fundamental difficulty in numerical and analytic procedures is to 
determine the location of the yield surfaces. Indeed, there is some dispute in the 
literature about whether such regions of unsheared flow can really exist in complex 
geometries. 

Lipscombe & Denn (1984) argued that while shear-free regions may sometimes be 
approximated, yielding and flow must occur everywhere in complex geometries. 
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These conclusions were developed in the context of pressure-driven flow between 
divergent planes and applied specifically to squeeze-film flow and the radial flow 
between stationary discs. The results of our own investigation lend some qualified 
support to this view, but we do not rule out the possibility of plugs of limited extent 
existing in some complex geometries. Gartling & Phan-Thien (1984) developed 
numerical and analytic results for the squeeze-film problem for a biviscosity plastic 
fluid, of which a Bingham plastic may be regarded as a limiting case. They claimed 
that a yield surface does exist even though their velocity profiles were very similar 
to Lipscombe & Denn’s and clearly exhibited elongational shear. There is no real 
disagreement between the results presented in these papers, only in their 
interpretation. The situation has been clarified by O’Donovan & Tanner (1984) who 
undertook careful numerical calculations of this problem. They showed that in the 
regions that appear to be plugs the stress exceeds the yield stress but only by a very 
small amount. A novel and complicating feature of their results is the presence of 
small unyielded regions near the centres of the discs. Numerical results have been 
obtained by Beris et al. (1985) for slow flow of a Bingham plastic round a sphere. 
Their calculations indicate the presence of unyielded regions at the poles of the 
sphere and at  large distances from the sphere. There is as yet no published analytic 
evidence for the existence of unyielded regions in complex geometries and the 
definitive solutions are still awaited. However, there is an extensive literature 
concerning the existence of unyielded regions in rigid/plastic solids (see Hill 1950), 
which may be regarded as a limiting case of a Bingham plastic as the plastic viscosity 
tends to  zero. For example, Beris et al. (1685) were able to demonstrate that the 
limiting case of their solution for the outer yield surface was well approximated by 
the corresponding results for rigid/plastic solids. Such results support the view that 
unyielded regions can exist for Bingham plastics even in complex geometries. 

The present work considers the axial flow of a Bingham plastic in a narrow 
eccentric annulus and has two main motivations. First, i t  seeks to model the flow of 
pastes and suspensions in a complex geometry that has industrial applications. 
Second, by solving the problem numerically and analytically, using perturbation 
techniques, we attempt to arrive a t  a definitive conclusion about the nature of the 
stress distribution and the location of any yield surfaces. There is a large body of 
published work, both theoretical and experimental, on the flow of Newtonian fluids 
through eccentric annuli (see, for example, Snyder & Goldstein 1965), but there is 
relatively little in the literature on the flow of non-Newtonian fluids in such a 
geometry. Mitsuishi & Aoyagi ( 1973) presented experimental and numerical results 
(using a variational technique) for the flow of a Sutterby fluid, while Iyoho & Azar 
(1980) used a narrow-gap approximation to  obtain results for power-law fluids. 
Guckes (1975) obtained numerical results for power-law fluids and Bingham plastics 
but only over a limited region of parameter space. There seems to be no published 
solution for the corresponding problem involving a rigid/plastic solid. 

The plan of the paper is as follows. The problem and the rheology are defined in 
$2,  and the analytic solution for small annular gaps is obtained in $3. The procedure 
for obtaining numerical solutions is described in $4. Finally, in $5, the analytic and 
numerical results are described and compared and some conclusions are drawn about 
the nature of the yield surface and the plug regions. 
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2. Governing equations 
The simplest rheological model of a fluid that exhibits a yield stress is the Bingham 

plastic whose constituative equation can be written 

T* = p*y* forr* > 7y*, (1) 

y* = 0  for^* < ry*, (2) 

where the viscosity, p*, is defined by 

7* 
p* = p : + x  

Y* 
(3) 

and T* is the stress tensor, y* is the rate-of-strain tensor, ry* the yield stress and pLg* 
the plastic viscosity. The second invariants of the stress and rate-of-strain tensors are 
defined by 

7* = [i(T*.-T*)]4 (4) 

y* = [;(y* .- Y*)]$. ( 5 )  
The surface r* = 7; marks the boundary between shearing fluid and fluid that is 
either at  rest or moving with a uniform velocity. The location of this surface (or 
surfaces) is not known a priori and presents one of the major difficulties in obtaining 
numerical solutions. An additional difficulty in obtaining numerical results is the 
singularity in (3) as j * + O ,  i.e. as the yield surface is approached. We follow the 
approach adopted by several authors (notably Bercovier & Engleman (1980) and 
Beris et al. (1985)) in replacing Y* with Y* + E in (3), where E is a small parameter 
(typically O(10-8)). It is not necessary to resort to this device in order to obtain 
analytic solutions, but unless a sub-yield-stress model is specified the stress field 
within any yield surfaces cannot be calculated. 

The fully developed velocity field for axial flow arises through a balance between 
viscous forces and the pressure gradient. The equation of conservation of momentum 
is 

dp* = V*.T*, 
dz* 

where p* is the dynamic pressure and z* is measured axially in the direction of flow. 
For an incompressible fluid the axial velocity component, w*, is independent of z*. 

It is convenient to non-dimensionalize the governing equations with reference to 
a velocity scale, w:, and a lengthscale, d*, which is taken to be the difference in the 
radii of the two bounding cylinders. We define a dimensionless radial coordinate, x ,  
by writing 

where S = d*/r :  is a dimensionless gap width. 

r* = rF(l+Sx), (7)  

The viscosity is scaled on pLg* and the stress on p: w:/d*. Equations ( l ) ,  (2) become 

T = py for7 > Bn, (8) 
= 0 for7 <Bn, (9) 

where 

and 

Bn p = 1 + T  
Y 
d* Bn=- 

PLg* wLg* 
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FIQURE 1. Annular geometry and coordinate system. 

is called the Bingham number. The momentum equation becomes 

where 

is the dimensionless pressure gradient. Solutions will be obtained for constant 
pressure gradient, in which case w$ is defined by w$ = d*2( -dp*/dz*)/p$ so that 

P = 1 and Bn = ?:Id*( -dp*/dz*). (14) 

Alternatively, if the flow rate, &*, is specified then w$ = &*/A*, where A* is the 
cross-sectional area, P remains unspecified, but w is now subject to  the additional 
constraint 

JIwdO = 1,  (15) 

where dO is an element of the cross-sectional area. 

are defined by 
The geometry of the eccentric annulus is shown in figure 1. The circular boundaries 

C, : xT2 +xZ2 = r * 2  I ?  (16) 

C,: ( x f - e * ) 2 + x , * 2  = rgz, (17) 
where r:, r: are the radii of the inner and outer cylinders respectively and e* is the 
offset of their centres. 

The boundary conditions appropriate for non-slip boundaries are 

w = O  on C, and C,. (18) 

At the yield surfaces both the velocity and the stress fields are required to be 
continuous. 

3. The narrow-gap approximation 
The analysis which follows is based on the simplifying approximation that the gap 

between the two cylinders is everywhere small compared with the mean radius. It is 
equivalent, a t  least to a first approximation, to neglecting the effect of curvature and 
treating the annulus as if it were a slot of variable width, this variation taking place 
on a lengthscale much larger than the mean slot width. 
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I n  terms of the scaled radial variable, x, and an angle 8 measured anticlockwise 
from the widest part of the annulus (see figure l) ,  the boundaries are located at 
x = 0, h(0)  defined by 

(19) 

Here e varies between 0 for a concentric annulus and 1 if the cylinders are in 
contact with one another. The narrow-gap approximation consists in letting S+ 0, 
while e remains O(1). Under these conditions an approximate solution for h can now 
be found by expanding in powers of 6, i.e. 

(20) 

(21 ) 

h,(O) = 1 + € ,  ho(x) = l -€ ,  (22) 

S2h2 +26h-26( 1 +Sh) e cos 0 = 2S+S2( 1 - e2). 

h = h, + Sh, + O(S2). 

ho = 1 +ecos8. 

It can easily be deduced from (19) that 

To leading order in S the maximum and minimum dimensionless gap widths are 

respectively. In  terms of these new coordinates, (12) becomes 

where 

aw 
P x z  = G? 

aw pez = S(l+SX)-l-, ae (27) 

p = [Piz + piz$. (28) 

For 6 < 1 it is natural to seek a solution by expanding in powers of 6. Thus, if w is 
expanded as 

then it follows that the components of the rate-of-strain tensors take the form 

w = w,+~w1+0(~2), (29) 

Y x z  = ?xzo + ~ Y X Z I  +0(S2), (30) 

pet = S Y S Z l +  0(S2) ,  (31) 

where 

The components of the stress tensor are also expanded in powers of S as follows: 

7 x 2  = Txzo + ST,Zl+ 0(S2), (33) 

roz = S T ~ ~ ~ + O ( S ~ ) .  (34) 

3.1.  The leading-order solution 
Having set up all the relevant expansions, the next step is to  substitute them into 
the governing equations and equate coefficients of powers of S to zero. This process 
is, in principle, quite straightforward, but in practice is complicated by the necessity 
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'Pseudo-plug (Region 11) 

FIGURE 2. Flow regions in the annulus. 

0 

FIGURE 3. Flow regions in the central section of the annulus. 

to  divide the annulus into a number of regions in each of which a different form of 
solution must be found. For simplicity of presentation we shall restrict the following 
discussion to  the constant-pressure-gradient case and set P = 1. As explained in $2 
there is no loss in generality in so doing, since this choice merely reflects the chosen 
scaling for the velocity field. The constant-flow-rate case is similar but involves an 
extra iteration on P to satisfy the constraint, (15). The leading-order solution is 
obtained by substituting the expansions into the governing equations and retaining 
only the largest terms. Thus, the leading terms in (23) give 

On integration and after appealing to symmetry about x = 0 this gives 

7,,0 = -z, (36) 

where z = x-ah,. Since the yield surfaces are now defined by 7 = f B n ,  i t  follows that 
they are located a t  z = f B n .  The region within these surfaces will be designated 
Region I1 and the regions outside will be denoted by Regions I, for z > B n  and 
z < -Bn, respectively, as shown in figures 2, 3. I n  Regions I, equation (8) applies; 
to leading order it gives 

p,,o + sgn (P,,O) Bn = - 5, (37) 
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i.e. pzzo = -(z+Bn). (38) 

w, = O  at z = f + h o  (39) 

(40) 

Inside the yield surfaces jzzo = 0, from which it follows that wo, does not change 
across this region and is equal to its value on the yield surfaces, i.e. 

(41) 

This solution represents a plug flow, moving with velocity wpo, flanked by sheared 
regions between the yield surfaces and the walls. The thickness of the plug region is 
independent of 8 and is in fact equal to 2Bn. Provided that 2Bn is smaller than the 
minimum gap width, (1 - e ) ,  the plug extends all round the annulus. If, however, 2Bn 
exceeds this value then there is a critical angle, which will be denoted by 8,, at  which 
the plug begins to fill the gap. Using the first approximation to the gap width in (21) 
it  can be seen that, t o  leading order, 8, is given by 

45 

The solution that satisfies the no-slip boundary conditions 

is w , ---1 - 2[(-TBn)2-(+ho-Bn)2]. x 

wo = wpo = +($h,-Bn)2. 

e, = cos-l (F) 
Where the plug fills the gaps (181 > 8,) the velocity of the fluid within the plug is zero, 
since it must satisfy the no-slip boundary conditions. This highlights the fact that the 
velocity within the plug is independent only of x; it does in fact vary with 0 through 
its dependence on the gap width, h,. 

The solution as presented above is now seen to be incomplete, for on the one hand 
the stress has been assumed to lie below the yield stress in the plug regions while, on 
the other hand, the velocity there clearly varies with 8, which requires the stress to 
exceed the yield stress. It was a similar observation that led Lipscombe & Denn 
(1984) to conclude that plugs cannot exist unless the boundaries are parallel. If 
Region I1 is not a true plug, it is nevertheless plug-like and we shall therefore refer 
to the region within z = f B n  as the pseudo-plug and the surfaces z = f B n  as the 
pseudo-yield surfaces. 

Outside the pseudo-yield surfaces the (x,  2)-component of the stress tensor is O( 1) 
and is given by (36). The (@,z)-eomponent is only O(S) and is given by 

with jzz0 given in (38). Clearly, 7021 remains o(1) as long as ljzzol remains 0(1), but 
at the pseudo-yield surface jzzo = 0 and this solution becomes singular. 

3.2. Solution in the pseudo-plug region 
The increase in magnitude of 7821 as the pseudo-yield surface is approached suggests 
that inside the pseudo-yield surface both components of the stress tensor (and hence 
of the rate-of-strain tensor) are of the same order of magnitude and that a solution 
should be sought by writing 

(44) w = wp = wpo(e) +swpl(e, x )  + o(s2). 
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Then 
aw p,, = s e +  ... , 

d w  ps,=s*+ ..., 

(45) 

(46) 

=spl+ .... (48) 

Equation (36) still holds for rxz0, but now the constitutive relation (equation (8)) 
gives 

Straightforward integration yields 

wpl = Bn (1 -&)i l%l+ w:l(0). 

Here w,*,(S) is obtained by matching with the second-order solution outside the 
pseudo-plug; details will not be given here since the result is not relevant to the 
further development of the theory. 

The leading contribution to rO2 is now O(1) and is given by 

Bndw 
T@20 = --. 

Y1 dB 

Use of (47), (48) (50) to eliminate yl and awpl/ax gives 

roz0 = sgn r2) Bn (1 -&r 
There are three aspects of this solution that merit comment. First, rszo+O as 
z+ +Bn, which indicates that relatively high values of the (0, 2)-component of the 
stress tensor are confined to the pseudo-p1ug.t Second, the second invariant of the 
stress tensor is given by 

(53 1 

= Bn2+ ... . (54) 

7 2  = T i z o  + 7iZ0 + . . . , 

Thus, even within the pseudo-plug, the stress exceeds the yield stress and this 
accounts for the shear seen in the leading approximation to the axial velocity 
component there. It has already been demonstrated that this shear results from the 
boundaries being non-parallel and this argument would seem to support Lipscombe 
& Denn’s contention and demolish any possibility of true sub-yield-stress plugs in 

t More precisely, T ~ ~ , ,  - pn&$ as z-t TBn.  Outside the yield surface - S/(Bn+z) as 
E +  TBn. The mis-match is smoothed out in regions of thickness d centred a t  E = kBn.  The 
solution is straightforward and details will not be given here. 
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FIGURE 4. Flow regions near 0 = 0. 

complex geometries. However, the solution even now is not complete. The third 
important feature of the pseudo-plug solution is that, since dwpo/d8 changes sign 
across 8 = 0 (and 8 = n, if the pseudo-plus extends that far), rozo possesses a 
discontinuity there. A closer examination of the regions near 8 = 0,n is required and 
it is here that true plugs appear. 

3.3. Solution near 8 = 0 
On the centreline of the annulus (Z = 0) r,, = 0 and, a t  least to leading order, roc 
takes the values f Bn on opposite sides of 8 = 0,n.  If regions exist close to 8 = 0, K 
in which roz changes smoothly from +Bn to -Bn, then, a t  least near the centreline, 
r2 < Bn2 and a true plug exists. 

In the solution given above it has been assumed that variations with 8 take place 
on a much longer lengthscale than do variations with radial distance. Consequently, 
&variations appear only parametrically. A solution will now be sought in the regions 
near 8 = 0,n on the basis that variations with 8 take place on a smaller scale than 
before, but still larger than the scale of the radial variations, in such a way that 
derivatives with respect to 8 appear a t  leading order. The proposed structure of the 
solution near 8 = 0 is shown in figure 4. Regions I, lie outside the pseudo-plus as 
before and Region I1 is an extension of the pseudo-plug itself. There is now a new 
region, Region 111, the true plug. It is bounded by 8 = f 8*, where i t  is expected that 
6 6 8* < 1 ;  a precise expression for 8* will be determined below. Note that the 
pseudo-plug has been widened to accommodate the true plug and that relative to the 
centreline of the annulus, 1 = 0, both cylindrical boundaries appear to be concave. 

By definition, the velocity within the true plug is constant ; it must therefore be 
equal to the velocity on the centreline of the annulus a t  8 = f8*. From (41) it can 
be seen that this velocity, wto, is given by 

(55)  * - 1 1  * wpo - z(&l -w2, 
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h,* = h,,+h,,e*2+ ..., (56) 

where ha, = l + e ,  h,, = - t e .  (57) 

The solution in Region I is similar to that given earlier except that the location of 
the pseudo-yield surfaces will now be modified to 

z = & (Bn+B(8)) .  (58) 

B(8) will be chosen so that the velocity on the pseudo-yield surface will no longer 
vary with 8. In Regions I,, then, we take the leading approximation to be 

7,, = - ( zwe) ) ,  (59) 

(60) 

wp0 = g[(&,- (Bn+B(8))I2. (61) 

w, = -g[(-- x + (Bn + B( 8))2 - (gh, - (Bn + B( e p ] .  
On the pseudo-yield surface the velocity takes the value wpo, where 

Region I1 is similar in some respects to that for 181 > 8* ;  in particular the first 
approximation to the velocity is independent of x .  If it matches the true plug velocity 
on one side and wpo on the other, it follows that B(8) must be chosen such that 
wpo = wz,,. This requires 

B(e)  = g(h,-h,*), (62) 
which for 181 < 1 becomes 

(63) 

This requirement on B(8) implies that the pseudo-yield surface runs parallel to the 
circular boundaries, precisely as would have been expected from the requirement 
that the velocity there is independent of 8. 

The stress field in that part of Region I1 with 181 < 8* is different from that for 
(81 > 8*, and a new solution of the momentum equation, 

B(e)  = ihOl(e2- e * 2 )  + . . . . 

-+6(1+6x)-' -+7,, = - I ,  ar,, 
ax (a,;; ) 

must be obtained. The proposed solution takes the form 

7,, = - c(e) Z, (65) 

where C(8) is chosen so that 7,, = T B n  at z = f (Bn+B(B)), i.e. 

For 181 Q 1 this reduces to 

1 
W )  = 1 --ha,(e2 2Bn - e * 2 )  + . . . . 

Substituting for 7,, and C(8) in (64) gives, to leading order in 6 and 8, 
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A balance between these terms of apparently different orders of magnitude is 
achieved if B is chosen to be O(d) .  On writing 0 = &$, B* = d$* and integrating, this 
becomes 

where the constant of integration has been chosen so that re2 = 0 at $ = 0. The extent 
of the modified Region I1 (and hence of the true plug, Region 111) is now determined 
by the requirement that rez = -Bn at $ = $*, i.e. 

3Bn2 
$* = (-z) * 

Note that rO2 = Bn at $ = -$* as required. In terms of e and B*, (70) becomes 

The yield surfaces are determined by the requirement that 

r& + rf = Bn2, 
which gives, to leading order, 

? + ( L Y  (4$3-$*2q5)2 = Bn2. 
4Bn (73)  

We shall refer to the region within the yield surface as the true plug, even though 
strictly speaking we need to calculate the stress field in this region to confirm that 
yielding does not occur; this requires specification of the material properties a t  
stresses below the yield stress and will not be examined in this paper. These results 
confirm that the true plug disappears for a Newtonian fluid, for which Bn = 0. For 
a Bingham plastic the extent of the true plug increases as the offset of centres 
decreases. When B* is O( l) ,  corresponding to e - IS, the theory presented here breaks 
down and new scalings are required. This will not be investigated here, but we note 
that the growth of the true plug as e decreases is consistent with the fact that for a 
concentric annulus ( e  = 0 )  the true plug extends all round the annulus. 

Similar remarks apply to the region near B = R if Bn is sufficiently small for the 
pseudo-plug to extend all round the annulus. The inner edge of the pseudo-plug again 
runs parallel to the circular boundaries, but this time it narrows towards B = R .  It 
can be shown that the solution is entirely analogous to that given above for the 
region near 0 = 0 and, in particular, that the azimuthal widths of the plugs are 
identical to leading order. 

3.4. Flow rate 
Finally, in this section, we demonstrate how the flow rate through the annulus 
depends upon Bn. If Q* is the dimensional flow rate, then a dimensionless flow rate, 
Q, is defined by writing 

where 
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It has already been noted that under certain conditions the fluid will be motionless 
for 181 > 8, and in these cases the upper limit of the first integral should be replaced 
by 8,; in general the limit should be min(x, 0,). 

A lowest-order approximation to the flow rate for small 6 is 

Using (40), (41) for w, it can be shown that 

IhO 1 
W ,  dx = -(h: - 3Bnhi + a n 3 ) ,  s -:ho 12 (77) 

This is the classic expression for the flow rate of a Bingham Plastic in a slot of 
thickness h, (see, Bird et al. 1983). Using h, = 1 + e cos 8 and integrating over (0, min 
(x, 8,)) gives 

Q, = Q( 1 - 3Bn + U n 3 )  8, + te(  1 - 2Bn) sin 8, 

+ Be2( 1 -Bn)( sin 28, + 28,) + +e3(sin 8, - 5 sin3 8,). (78) 

Here 8, stands for min (x, 8J. 
In  the main body of the annulus the next approximation to w is O(6) and this 

provides a similar correction to Q. The augmented solution near 8 = 0, x provides a 
correction to w which is slightly larger, O(d), but it holds over a limited range in 8 
of width O(b). The effect is another correction O(S) to the flow rate. It would not 
appear to  be worthwhile, therefore, to evaluate the second correction without also 
evaluating the first. However, when the results of this theory are compared with our 
numerical results, there is much better agreement in the middle part of the annulus 
than might have been expected. It would seem, on this basis, that the largest 
numerical correction to Q, does, in fact, come from the augmented solution near 
8 = 0, x and, therefore, this correction will now be evaluated. 

Near 8 = 0 the effective half-width of the plug is Bn+B(B) with B(8) defined as in 
(63). If this is substituted for Bn in (77), then the leading-order correction is 

B(8)(Bn2 -a( 1 + e )” .  (79) 

Integrating with respect to 0 over -8* to 8* gives the correction, SQ, to the flow rate 
as 

SQ = ie(Bn2-t(l +e)2)8*3.  (80) 

The simplest way of calculating the solution when the flow rate, Q*, rather than 
the pressure gradient is specified is to use (74) to define Q in terms of Bn and then to 
solve the nonlinear algebraic equations (78), (80) for Bn. 

3.5.  Discussion of the leading-order solution 
Except for those regions near the widest and narrowest sections of the annulus, the 
flow regime consists of a central pseudo-plug (Region 11) of width 2Bn, flanked by 
shearing regions (Regions I*), as shown in figures 2,  3. This structure is similar to 
that for a slot of uniform thickness, the main difference being that the stress in the 
pseudo-plug is greater than the yield stress and that the velocity in the pseudo-plug 
is constant across i t  but not along it. True (unyielded) plugs exist a t  the widest (and 
also possibly the narrowest) parts of the annulus, their azimuthal extent depending 
essentially on the eccentricity, e ,  of the annulus. 
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If Bn < +( 1 - e )  then the pseudo-plug is narrower than the narrowest part of the 
annulus and therefore extends all the way round. In  this case the structure of the 
solution near B = R is similar to that near 8 = 0;  in fact all that need be changed is 
the replacement of 13 with n-8 in the leading-order solution. 

If Bn > +( 1 - e )  there is a critical angle, B,, a t  which the thickness of the pseudo- 
plug is exactly equal to  the gap thickness. To a first approximation Oc is given by 

For 181 < Bc the solution given above holds, but the fluid is motionless when 181 > 0,. 
The two limiting cases in which Bn is close to a(l - e )  or t ( l  + e )  are of special 

interest because then the critical angle, B,, for the onset of the stationary segment is 
close to R and 0, respectively. First, suppose that Bn is close to t( 1 - e )  and write 

Bn = +( l -e )+bn, ,  (82) 

where bn, is small and positive. Then, substituting into (81) and expanding about 
a( 1 - e )  gives 

8, = 7t-O1, (83) 

where 8, = (4bn,/e)i. (84) 

If 0, > B* the solution is as given above. For 8, < 8*, on the other hand, the true- 
plug region extends beyond the point where the stationary segment would have 
started. In  this range of parameters the fluid flows on the narrow side, albeit slowly. 
The condition for the fluid to cease flowing altogether on the narrow side must now 
be modified to 

Bn > ; ( l -e )+$e  (3(  1 --ee)2"): = Bn,, 

say. 

wide side of the annulus, i.e. 

where, now, Bn, is small and positive. Then, substituting into (81) and expanding 
about +( 1 + e )  gives 

If 8, > 8* then the solution is as given above, but with only a narrow sheared region 
between the stationary segment and the true plug near 0 = 0. For 8, < 8*, on the 
other hand, the true-plug region extends beyond the point where the stationary 
segment would have started. In  this range of parameters the velocity of the true plug 
is zero and, consequently, there is no flow a t  all in the annulus. Thus, the condition 
for the fluid to be stationary throughout the annulus must be modified to 

Now suppose that Bn is so large that the pseudo-plug almost fills the gap on the 

B n = + ( l + e ) - b n , ,  (86) 

8, = (4bn,/e)f. (87) 

Bn > t ( l+e)-ae (3( 1 iee)'i9Y = Bn,, 

say. 

as follows : 
For Bn < Bn, 

These results for the dependence of the flow pattern on Bn may be summarized 

true plug for 101 < 8* ; 
pseudo-plug for 8* < 161 < n-0*; 
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FIGURE 5 .  Critical angles for S = 0.1, e = 0.5. 

true plug for 181 > 7c - 8*. 
true plug for 191 c B* ; 
pseudo-plug for 8* < 181 c Bc ; 
stationary segment for 181 > Bc. 
no flow a t  all. 

For Bn, < Bn < Bn, 

For Bn > Bn, 
This division of flow regimes is illustrated in figure 5 for 6 = 0.1, e = 0.5. 

4. Numerical solution 
The only previous attempt at a numerical solution of the flow of a Bingham plastic 

in an eccentric annulus was by Guckes (1975), who used a finite.-difference scheme. 
His results covered only a very restricted part of the parameter space owing to  
numerical difficulties associated with the loss of significant digits in regions of plug 
flow where the velocity gradients are zero and the viscosity is theoretically infinite. 
Other methods which have been considered for this calculation are boundary- 
element methods and spectral methods. Boundary-element methods are restricted to 
a limited class of problems and only recently have researchers attempted to solve 
nonlinear elliptic equations. Spectral methods could be applied to this problem, for 
the geometry lends itself to a Fourier expansion azimuthally which would lead to a 
system of ordinary differential equations in the radial direction. The ordinary 
differential equations would be solved as boundary-value problems, because of the 
no-slip conditions on the inner and outer cylinders, and so shooting or some 
equivalent scheme would be required. The success of the spectral method would 
depend on the ease with which the ordinary differential equations could be solved. 

The most commonly used numerical schemes for flows such as these are based on 
finite-element techniques (O’Donovan & Tanner 1984 ; Gartling & Phan-Thien 1984 ; 
Crochet, Davis & Walters 1984; Beris et al. 1985). They are particularly suitable to 
complex geometries and have the additional advantage of remaining stable when 
large gradients occur in the interior of the domain. Nevertheless, i t  is necessary to 
exclude the possibility of the shear rate y reducing exactly to zero for this would 
make the viscosity infinite. In  (10) then, i t  is necessary to replace y with p + B ,  where 
B is a small number, typically about lo-*. The finite-element method is then applied 
to this problem by using quadratic shape functions. Each element has eight nodes 
and an iso-parametric transformation allows elements to  align themselves with the 
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X 5 
FIQURE 6. Parametric element mapping. 

FIQURE 7. Finite-element mesh. 

boundary. The notation used here closely follows that of the NAG Finite Element 
Library and the routines from that library were used in the computation. Let us 
write 

8 

$1 = x Ndt, 7) $14, 

$2 = x NAk-9 7) $247 

(89) 

(90) 

4-1 

8 

4-1 

where the curvilinear element in the (q, $,)-plane has been mapped onto a square in 
the (&r))-plane by the shape functions Ni. Here the points (x14,x2d) are the nodal 
positions in the (z,,z,)-plane. The transformation is shown in figure 6 and the full 
finite-element mesh in figure 7. The shape functions in terms of (&v)-coordinates are 

4(&7) = W + E m  +774)(554+774-1)9 (91) 
at the corner nodes. For a typical mid-side node, e.g. & = 0, y4 = 1 the shape function 
is 

Because of the iso-parametric representation the solution is of the form 
8 

w = xN4K7)Wd 
4-1 

on each element. We now define the inner product 

(93) 

(94) 
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A weak form of the equation of motion is formed by multiplying the equation of 
motion by each shape function in turn and integrating over the cross-section. Thus 
for just one element 

Writing Ni,x for t.hTi/ax and using Green’s theorem we obtain 

( N , ; V - ( p V w ) )  = ( N i ; P ) .  (95) 

(96) (4, x ; P y x )  + (Ni, y ; PW,y) = - p w i  ; 1 > 9  

where the boundary integrals have been ignored since they cancel on element- 
element edges. Substituting for w in this expression gives 

((Nt,  x ; PNj, x) + (Ni, 1/ ; @j, ,>) wj = -P<Ni ; 1 ) -  (97) 

We note that ,u is a function of w and so this gives a nonlinear system of equations. 
We can write the above as 

M ~ * ( P ( w ) )  wj = -Phi, (98) 

M i i ( ~ ( ~ ” - ’ ) )  W; = -Pbi.  (99) 

showing explicitly the dependence of M on w.  We can now linearize this equation by 
the Picard iteration 

For a specified pressure gradient P is set equal to 1. For a specified flow rate P is 
determined by the constraint given by (15) .  We could have chosen to linearize the 
equation using Newton iteration, however the difficult nature of the viscosity for 
Bingham fluids reduces the circle of convergence so dramatically that Newton 
iteration generally fails. 

A method for finding the unknown pressure gradient P is to  write out the 
constraint equation as 

(100) 

which leads us to the extra algebraic equation 

C ( N i ; l ) w i =  ( 1 ; l ) .  (101) 

( w ;  1) = ( 1 ;  I), 

i 

Thus, the solution is found by including this algebraic equation with the equation of 
motion and solving for 

where there are n nodes. The sparse matrix is a doubly bordered band diagonal 
matrix whose symmetry can be maintained since the inner product on the right-hand 
side of (97) is the same as the inner product on the left-hand side of (101). A special 
routine was written to solve this system of algebraic equations which was based on 
a banded solver published by the IMSL. 

The construction of matrix M involves performing the integrals represented by the 
inner products in (97). We must also find the viscosity variation over each element 
and so the rate of strain. Substituting (93) into the non-dimensional form of (5) 
produces 

(w1, * .  3 W,lp)T, (102) 

Equation (97) cannot be integrated explicitly, so solutions were obtained numerically 
using a nine-point Gaussian quadrature rule for each element. We shall not go into 
the full details of constructing M and just note that the band width of the main 
diagonal of M is determined by the ordering of the nodes on the finite-element mesh. 
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kz) Newtonian fluid 

(b) Power-law fluid 

(c) Bingham plastic 

FIGURE 8. Velocity contours. 

5. Results and conclusions 
In order to gain some impression of the different flow patterns obtained with 

different fluids, numerical solutions have been obtained for three different fluids. 
Figure 8 shows contours of constant velocity in an annulus with a radius ratio of 0.5 
and offset of 0.5. This radius has been chosen so that the contours can be seen clearly. 
Figure 8 (a)  shows a Newtonian fluid. For a fixed geometry the Newtonian solution 
is universal for the scalings used earlier. There are nine contours, equally spaced 
between zero and the peak velocity, which show that the flow is fastest through the 
wide side of the annulus and is proceeding more slowly through the narrow side. 
Figure 8 ( b )  shows the flow of a power-law fluid of power index 0.5. Again nine equally 
spaced contours have been plotted. The fast-moving region of low shear on the wide 
side of the annulus has increased in extent, compared to the Newtonian result, and 
consequently the shear rates near the walls have been increased. Figure 8(c)  shows 
nine contours for a Bingham plastic with the parameter Bn (now defined in terms of 
a given flow rate) set to 25. A large plug region exists on the wide side of the annulus 
with very high shear rates near the walls. From the contours we can deduce that the 
flow rate through the narrow side of the annulus must be very low. The next figures 
will quantify this effect. 

Figure 9 shows four frames of the flow profiles in the narrowest and widest sections 
of the annulus for a power-law fluid of power index 0.5. The radius ratio in these 
calculations is 0.8 and for convenience the centrebody has not been drawn to scale 
in these results. Figure 9(a)  shows a concentric annulus and since the velocity is 
scaled relative to the mean velocity the peak velocity is approximately 1.3. Figure 
9 ( b )  shows the effect of changing the offset to 0.25. The change in the flow profiles is 
dramatic, with rapid flow up the wide side of the annulus at over twice the mean 
velocity whilst the peak velocity on the narrow side of the annulus is reduced to less 
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FIGURE 9. Typical radial velocity distribution for a power-law fluid. 
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FIGURE 10. Typical radial velocity distribution for a Bingham plastic. 

than half the mean velocity. Figure 9(c) shows an offset of 0.5 and the effect is 
accentuated further. Figure 9 ( d )  shows an offset of 0.75 where there is now almost no 
flow up the narrow side. The peak velocity on the narrow side of the annulus is never 
identically zero since the fluid does not exhibit a yield stress. 

Figure 10 shows four similar results but for a Bingham plastic with the parameter 
Bn set to 10. Figure 10 (a )  is for a concentric annulus and displays the characteristic 
flat profiles where the stress has fallen below the yield stress. Figure lO(b)  is for an 
offset of 0.25 and shows a greater reduction in the narrow side velocity than was seen 
for the power-law fluid. Figure lO(c) for an offset of 0.5 indicates that the flow has 
stopped on the narrow side of the annulus. The final figure, lO(d), emphasizes this 
further. Also notice the wider plug on the wide side of the annulus in the final frame. 

Figure 11 shows a plot of the centreline velocity as a function of angular position. 
The flow is of a Bingham fluid in an annulus with radius ratio 0.5 and offset 0.5 with 
the parameter Bn set to 10. The angular position is measured in radians and is zero 
in the widest part of the annulus and 7c in the narrowest part. The diagram shows 
that there is a true-plug region in the wide side of the annulus and a large immobile 
region in the narrow side. 

In order to compare the numerical results with the narrow-gap asymptotic 
solution over a range of values of offset, e ,  Bingham Number, Bn, and dimensionless 
gap width, S, it is first convenient to rescale Bn (defined now in terms of a given 
pressure gradient) by writing 

Bn = +( l+e)Bn.  (104) 
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FIGURE 11. Typical azimuthal velocity distribution. 
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FIGURE 12. Centreline velocity for S = 0.1, e = 0.1, Bn = 0.6. 

Then, whatever the value of e ,  B n  ranges from 0 for a Newtonian fluid t o  1 for a 
Bingham plastic for which the yield stress is so large that the pseudo-plug fills the gap 
on the wide side of the annulus. 

An indication of the qualitative agreement on the structure of the solution and the 
accuracy that might be expected is obtained by examining the predictions for the 
variation of the velocity a t  the centreline of the annulus with azimuthal angle, 8. A 
sample result is shown in figure 12 for 6 = 0.1, e = 0.1 and scaled Bingham number, 
Bn = 0.6. Two analytic approximations are shown : a basic one, which excludes from 
consideration the true plugs near 8 = O,n, and an extended one which includes the 
leading approximation in these regions. It can be seen from figure 12 that  both 
approximations agree very well with the numerical results in the middle range of 
angles ; in fact agreement is better than the 10 % error that  might be expected from 
these solutions with 6 = 0.1. The extended solution also performs very well in 
predicting the location of the true plugs and the velocity of the fluid within them. 
The basic analytic approximation cannot, of course, predict the location of the true 
plugs and its prediction of the velocities at the widest and narrowest parts of the 
annulus is in error by some 20%. 

Comparisons of the numerical solution and approximate analytic solution have 
been made for a range of values of 6, e,Bn. Results for 6 = 0.1 and e = 0.5 are shown 
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FIGURE 13. Centreline velocity for 6 = 0.1, e = 0.5: -, numerical solution; 
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FIGURE 14. Centreline velocity for 6 = 0.1, Bn = 0.5: -, numerical solution; 
x , extended slot solution. 

in figure 13. Agreement is excellent for values of the scaled Bingham number below 
about 0.7, but appears to  deteriorate progressively beyond that. For these higher 
values o f B n  the transition between the true plug and stationary segment takes place 
over an ever narrowing range of angles, generating large gradients in the veiocity and 
stress fields. Prediction of the plug velocity is in error by about 20% for Bn = 0.85, 
but this is largely a reflection of the steep variation of velocity with angle. No 
numerical solutions could be obtained for Bn > 0.85, which is, consistent with the 
predictions of the extended slot model that there is no flow for Bn > 0.87 in this case. 
The basic analytic approximation predicts flow right up to Bn = I .  

Sample solutions for a range of offsets, e ,  with 6 = 0.1 and Bn = 0.5 are shown in 
figure 14. Once again agreement is excellent. The predicted narrowing of the true 
plugs as e increases is apparent. 

A more severe test of the extended slot model is to  compare it with the numerical 
results over a range of values of 6. Figure 15 shows such a comparison for Bn = 0.5 
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FIGURE 15. Centreline velocity for e = 0.5, Bn = 0.5: -, numerical solution; 
x , extended slot solution. 
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and e = 0.5. Excellent agreement is achieved for 6 < 0.2 and the error is still only 
about 10% for S as high as 0.4. The extent of the stationary region is almost 
unaffected by changes in 8, but the true plug grows wider. 

In  summary, there is good qualitative and quantitative agreement between the 
numerical solutions and the asymptotic analytic solutions provided that the leading- 
order solution is determined throughout the entire flow field. In  particular, the 
location and extent of various flow regions is confirmed. An important result is that 
the main part of the annulus contains regions that are plug-like in so far as the 
velocity is constant across the plug, but varies along it. The shear is zero in the radial 
direction but non-zero in the azimuthal direction, leading to  a stress greater than the 
yield stress throughout this region. Close examination of the regions near the widest 
and narrowest sections of the annulus reveals that  here true plugs do exist and that 
their shape and size is dependent on the eccentricity of the annulus. It would be 
premature to speculate on the significance of these results for the flow of Bingham 
plastics in other complex geometries, but i t  would be reasonable to expect that  the 
regions that other authors have termed plugs are, strictly speaking, only pseudo- 
plugs. However, the possibility of the coexistence of true plugs with the pseudo-plugs 
cannot now be ruled out, although they might be of only finite extent and difficult 
to  discover. 

We wish to thank Ian Xobey for useful discussions during the early stages of this 
work and Sarah Weatherley for helping with the diagrams. We are grateful to a 
referee for pointing out to use the relevance of the theory of rigidlplastic solids. 
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